Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 143(7): 1217-27, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903508

RESUMO

Embryogenesis in rice is different from that of most dicotolydonous plants in that it shows a non-stereotypic cell division pattern, formation of dorsal-ventral polarity, and endogenous initiation of the radicle. To reveal the transcriptional features associated with developmental events during rice early embryogenesis, we used microarray analysis coupled with laser microdissection to obtain both spatial and temporal transcription profiles. Our results allowed us to determine spatial expression foci for each expressed gene in the globular embryo, which revealed the importance of phytohormone-related genes and a suite of transcription factors to early embryogenesis. Our analysis showed the polarized expression of a small number of genes along the apical-basal and dorsal-ventral axes in the globular embryo, which tended to fluctuate in later developmental stages. We also analyzed gene expression patterns in the early globular embryo and how this relates to expression in embryonic organs at later stages. We confirmed the accuracy of the expression patterns found by microarray analysis of embryo subdomains using in situ hybridization. Our study identified homologous genes from Arabidopsis thaliana with known functions in embryogenesis in addition to unique and uncharacterized genes that show polarized expression patterns during embryogenesis. The results of this study are presented in a database to provide a framework for spatiotemporal gene expression during rice embryogenesis, to serve as a resource for future functional analysis of genes, and as a basis for comparative studies of plant embryogenesis.


Assuntos
Arabidopsis/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/embriologia , Reguladores de Crescimento de Plantas/genética , Divisão Celular/fisiologia , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos
2.
Int J Genomics ; 2015: 358127, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199933

RESUMO

We elucidated the genome sequence of Glycine max cv. Enrei to provide a reference for characterization of Japanese domestic soybean cultivars. The whole genome sequence obtained using a next-generation sequencer was used for reference mapping into the current genome assembly of G. max cv. Williams 82 obtained by the Soybean Genome Sequencing Consortium in the USA. After sequencing and assembling the whole genome shotgun reads, we obtained a data set with about 928 Mbs total bases and 60,838 gene models. Phylogenetic analysis provided glimpses into the ancestral relationships of both cultivars and their divergence from the complex that include the wild relatives of soybean. The gene models were analyzed in relation to traits associated with anthocyanin and flavonoid biosynthesis and an overall profile of the proteome. The sequence data are made available in DAIZUbase in order to provide a comprehensive informatics resource for comparative genomics of a wide range of soybean cultivars in Japan and a reference tool for improvement of soybean cultivars worldwide.

3.
Sci Rep ; 5: 10835, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26056784

RESUMO

Understanding the processes that regulate plant sink formation and development at the molecular level will contribute to the areas of crop breeding, food production and plant evolutionary studies. We report the annotation and analysis of the draft genome sequence of the radish Raphanus sativus var. hortensis (long and thick root radish) and transcriptome analysis during root development. Based on the hybrid assembly approach of next-generation sequencing, a total of 383 Mb (N50 scaffold: 138.17 kb) of sequences of the radish genome was constructed containing 54,357 genes. Syntenic and phylogenetic analyses indicated that divergence between Raphanus and Brassica coincide with the time of whole genome triplication (WGT), suggesting that WGT triggered diversification of Brassiceae crop plants. Further transcriptome analysis showed that the gene functions and pathways related to carbohydrate metabolism were prominently activated in thickening roots, particularly in cell proliferating tissues. Notably, the expression levels of sucrose synthase 1 (SUS1) were correlated with root thickening rates. We also identified the genes involved in pungency synthesis and their transcription factors.


Assuntos
Perfilação da Expressão Gênica , Genoma de Planta , Raízes de Plantas/crescimento & desenvolvimento , Raphanus/genética , Análise por Conglomerados
4.
Plant Cell Physiol ; 54(11): 1791-802, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24089432

RESUMO

Using co-expression network analysis, we identified 123 transcription factors (TFs) as candidate secondary cell wall regulators in rice. To validate whether these TFs are associated with secondary cell wall formation, six TF genes belonging to the MYB, NAC or homeodomain-containing TF families were overexpressed or downregulated in rice. With the exception of OsMYB58/63-RNAi plants, all transgenic plants showed phenotypes possibly related to secondary cell wall alteration, such as dwarfism, narrow and dark green leaves, and also altered rice cinnamyl alcohol dehydrogenase 2 (OsCAD2) gene expression and lignin content. These results suggest that many of the 123 candidate secondary cell wall-regulating TFs are likely to function in secondary cell wall formation in rice. Further analyses were performed for the OsMYB55/61 and OsBLH6 TFs, the former being a TF in which the Arabidopsis ortholog is known to participate in lignin biosynthesis (AtMYB61) and the latter being one for which no previous involvement in cell wall formation has been reported even in Arabidopsis (BLH6). OsMYB55/61 and OsBLH6-GFP fusion proteins localized to the nucleus of onion epidermal cells. Moreover, expression of a reporter gene driven by the OsCAD2 promoter was enhanced in rice calli when OsMYB55/61 or OsBLH6 was transiently expressed, demonstrating that they function in secondary cell wall formation. These results show the validity of identifying potential secondary cell wall TFs in rice by the use of rice co-expression network analysis.


Assuntos
Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Fatores de Transcrição/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Celulose/metabolismo , Expressão Gênica , Genes Reporter , Lignina/análise , Lignina/metabolismo , Cebolas/citologia , Cebolas/enzimologia , Cebolas/genética , Oryza/citologia , Oryza/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão , Fatores de Transcrição/metabolismo
5.
Plant Cell Physiol ; 54(11): 1803-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24089433

RESUMO

The plant secondary cell wall is the major source of lignocellulosic biomass, a renewable energy resource that can be used for bioethanol production. To comprehensively identify transcription factors (TFs), glycosyltransferase (GT) and glycosyl hydrolase (GH) involved in secondary cell wall formation in rice (Oryza sativa), co-expression network analysis was performed using 68 microarray data points for different rice tissues and stages. In addition to rice genes encoding orthologs of Arabidopsis thaliana TFs known to regulate secondary cell wall formation, the network analysis suggested many novel TF genes likely to be involved in cell wall formation. In the accompanying paper (Hirano et al.), several of these TFs are shown to be involved in rice secondary cell wall formation. Based on a comparison of the rice and Arabidopsis networks, TFs were classified as common to both species or specific to each plant species, suggesting that in addition to a common transcriptional regulatory mechanism of cell wall formation, the two plants may also use species-specific groups of TFs during secondary wall formation. Similarly, genes encoding GT and GH were also classified as genes showing species-common or species-specific expression patterns. In addition, genes for primary or secondary cell wall formation were also suggested. The list of rice TF, GT and GH genes provides an opportunity to unveil the regulation of secondary cell wall formation in grasses, leading to optimization of the cell wall for biofuel production.


Assuntos
Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Oryza/citologia , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant J ; 76(4): 699-708, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980637

RESUMO

Comparative analysis using available genomic resources within closely related species is an effective way to investigate genomic sequence and structural diversity. Rice (Oryza sativa L.) has undergone significant physiological and morphological changes during its domestication and local adaptation. We present a complete bacterial artificial chromosome (BAC) physical map for the aus rice cultivar 'Kasalath', which covers 90% of the sequence of temperate japonica rice cultivar 'Nipponbare'. Examination of physical distances between computational and experimental measurements of 'Kasalath' BAC insert size revealed the presence of more than 500 genomic regions that appear to have significant chromosome structural changes between the two cultivars. In particular, a genomic region on the long arm of 'Kasalath' chromosome 11 carrying a disease-resistance gene cluster was greatly expanded relative to the 'Nipponbare' genome. We also decoded 41.37 Mb of high-quality genomic sequence from 'Kasalath' chromosome 1. Extensive comparisons of chromosome 1 between 'Kasalath' and 'Nipponbare' led to the discovery of 317,843 single-nucleotide polymorphisms (SNPs) and 66,331 insertion/deletion (indel) sites. Nearly two-thirds of the expressed genes on rice chromosome 1 carried natural variations involving SNPs and/or indels that resulted in substitutions, insertions or deletions of amino acids in one cultivar relative to the other. We also observed gain and loss of genes caused by large indels. This study provides an important framework and an invaluable dataset for further understanding of the molecular mechanisms underlying the evolution and functions of the rice genome.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Genoma de Planta , Oryza/genética , Mapeamento Físico do Cromossomo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Variação Genética , Dados de Sequência Molecular
7.
G3 (Bethesda) ; 3(9): 1481-92, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23821615

RESUMO

The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.


Assuntos
Bombyx/genética , DNA Complementar/genética , Genoma , Modelos Biológicos , Animais , Mapeamento Cromossômico , Bases de Dados Genéticas , Éxons , Etiquetas de Sequências Expressas , Feminino , Biblioteca Gênica , Íntrons , Masculino , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA , Transcriptoma
8.
Nucleic Acids Res ; 41(Database issue): D1206-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180765

RESUMO

A wide range of resources on gene expression profiling enhance various strategies in plant molecular biology particularly in characterization of gene function. We have updated our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp/), to provide more comprehensive information on the transcriptome of rice encompassing the entire growth cycle and various experimental conditions. The gene expression profiles are currently grouped into three categories, namely, 'field/development' with 572 data corresponding to 12 data sets, 'plant hormone' with 143 data corresponding to 13 data sets and 'cell- and tissue-type' comprising of 38 microarray data. In addition to the interface for retrieving expression information of a gene/genes in each data set, we have incorporated an interface for a global approach in searching an overall view of the gene expression profiles from multiple data sets within each category. Furthermore, we have also added a BLAST search function that enables users to explore expression profile of a gene/genes with similarity to a query sequence. Therefore, the updated version of RiceXPro can be used more efficiently to survey the gene expression signature of rice in sufficient depth and may also provide clues on gene function of other cereal crops.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Oryza/genética , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Interface Usuário-Computador
9.
Nucleic Acids Res ; 41(Database issue): D1214-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180784

RESUMO

Similarity of gene expression across a wide range of biological conditions can be efficiently used in characterization of gene function. We have constructed a rice gene coexpression database, RiceFREND (http://ricefrend.dna.affrc.go.jp/), to identify gene modules with similar expression profiles and provide a platform for more accurate prediction of gene functions. Coexpression analysis of 27 201 genes was performed against 815 microarray data derived from expression profiling of various organs and tissues at different developmental stages, mature organs throughout the growth from transplanting until harvesting in the field and plant hormone treatment conditions, using a single microarray platform. The database is provided with two search options, namely, 'single guide gene search' and 'multiple guide gene search' to efficiently retrieve information on coexpressed genes. A user-friendly web interface facilitates visualization and interpretation of gene coexpression networks in HyperTree, Cytoscape Web and Graphviz formats. In addition, analysis tools for identification of enriched Gene Ontology terms and cis-elements provide clue for better prediction of biological functions associated with the coexpressed genes. These features allow users to clarify gene functions and gene regulatory networks that could lead to a more thorough understanding of many complex agronomic traits.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes de Plantas , Oryza/genética , Internet , Anotação de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Software
10.
Plant J ; 69(1): 126-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21895812

RESUMO

The root system is a crucial determinant of plant growth potential because of its important functions, e.g. uptake of water and nutrients, structural support and interaction with symbiotic organisms. Elucidating the molecular mechanism of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants, including rice (Oryza sativa). As an initial step towards developing a comprehensive understanding of the root system, we performed a large-scale transcriptome analysis of the rice root via a combined laser microdissection and microarray approach. The crown root was divided into eight developmental stages along the longitudinal axis and three radial tissue types at two different developmental stages, namely: epidermis, exodermis and sclerenchyma; cortex; and endodermis, pericycle and stele. We analyzed a total of 38 microarray data and identified 22,297 genes corresponding to 17,010 loci that showed sufficient signal intensity as well as developmental- and tissue type-specific transcriptome signatures. Moreover, we clarified gene networks associated with root cap function and lateral root formation, and further revealed antagonistic and synergistic interactions of phytohormones such as auxin, cytokinin, brassinosteroids and ethylene, based on the expression pattern of genes related to phytohormone biosynthesis and signaling. Expression profiling of transporter genes defined not only major sites for uptake and transport of water and nutrients, but also distinct signatures of the radial transport system from the rhizosphere to the xylem vessel for each nutrient. All data can be accessed from our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp), thereby providing useful information for understanding the molecular mechanisms involved in root system development of crop plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Perfilação da Expressão Gênica , Genoma de Planta , Microdissecção , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Coifa/genética , Coifa/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
11.
Plant J ; 66(5): 796-805, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21323774

RESUMO

Here we present the genomic sequence of the African cultivated rice, Oryza glaberrima, and compare these data with the genome sequence of Asian cultivated rice, Oryza sativa. We obtained gene-enriched sequences of O. glaberrima that correspond to about 25% of the gene regions of the O. sativa (japonica) genome by methylation filtration and subtractive hybridization of repetitive sequences. While patterns of amino acid changes did not differ between the two species in terms of the biochemical properties, genes of O. glaberrima generally showed a larger synonymous-nonsynonymous substitution ratio, suggesting that O. glaberrima has undergone a genome-wide relaxation of purifying selection. We further investigated nucleotide substitutions around splice sites and found that eight genes of O. sativa experienced changes at splice sites after the divergence from O. glaberrima. These changes produced novel introns that partially truncated functional domains, suggesting that these newly emerged introns affect gene function. We also identified 2451 simple sequence repeats (SSRs) from the genomes of O. glaberrima and O. sativa. Although tri-nucleotide repeats were most common among the SSRs and were overrepresented in the protein-coding sequences, we found that selection against indels of tri-nucleotide repeats was relatively weak in both African and Asian rice. Our genome-wide sequencing of O. glaberrima and in-depth analyses provide rice researchers not only with useful genomic resources for future breeding but also with new insights into the genomic evolution of the African and Asian rice species.


Assuntos
Hibridização Genômica Comparativa , Evolução Molecular , Genoma de Planta , Repetições de Microssatélites , Oryza/genética , Substituição de Aminoácidos , Sequência de Bases , DNA de Plantas/genética , Genes de Plantas , Mutação INDEL , Íntrons , Sítios de Splice de RNA , Seleção Genética , Análise de Sequência de DNA
12.
BMC Plant Biol ; 11: 10, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21226959

RESUMO

BACKGROUND: Plant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions. RESULTS: A wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change. CONCLUSIONS: Our study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/fisiologia , Ritmo Circadiano/genética , Análise por Conglomerados , Especificidade de Órgãos/genética , Oryza/crescimento & desenvolvimento , Fotossíntese/genética , Infertilidade das Plantas/genética , Pólen/genética , Reprodução/genética , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
13.
Plant Cell Physiol ; 52(2): 230-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21216747

RESUMO

The Rice TOGO Browser is an online public resource designed to facilitate integration and visualization of mapping data of bacterial artificial chromosome (BAC)/P1-derived artificial chromosome (PAC) clones, genes, restriction fragment length polymorphism (RFLP)/simple sequence repeat (SSR) markers and phenotype data represented as quantitative trait loci (QTLs) onto the genome sequence, and to provide a platform for more efficient utilization of genome information from the point of view of applied genomics as well as functional genomics. Three search options, namely keyword search, region search and trait search, generate various types of data in a user-friendly interface with three distinct viewers, a chromosome viewer, an integrated map viewer and a sequence viewer, thereby providing the opportunity to view the position of genes and/or QTLs at the chromosomal level and to retrieve any sequence information in a user-defined genome region. Furthermore, the gene list, marker list and genome sequence in a specified region delineated by RFLP/SSR markers and any sequences designed as primers can be viewed and downloaded to support forward genetics approaches. An additional feature of this database is the graphical viewer for BLAST search to reveal information not only for regions with significant sequence similarity but also for regions adjacent to those with similarity but with no hits between sequences. An easy to use and intuitive user interface can help a wide range of users in retrieving integrated mapping information including agronomically important traits on the rice genome sequence. The database can be accessed at http://agri-trait.dna.affrc.go.jp/.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Genômica/métodos , Oryza/genética , Internet , Locos de Características Quantitativas , Interface Usuário-Computador
14.
Nucleic Acids Res ; 39(Database issue): D1141-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21045061

RESUMO

Elucidating the function of all predicted genes in rice remains as the ultimate goal in cereal genomics in order to ensure the development of improved varieties that will sustain an expanding world population. We constructed a gene expression database (RiceXPro, URL: http://ricexpro.dna.affrc.go.jp/) to provide an overview of the transcriptional changes throughout the growth of the rice plant in the field. RiceXPro contains two data sets corresponding to spatiotemporal gene expression profiles of various organs and tissues, and continuous gene expression profiles of leaf from transplanting to harvesting. A user-friendly web interface enables the extraction of specific gene expression profiles by keyword and chromosome search, and basic data analysis, thereby providing useful information as to the organ/tissue and developmental stage specificity of expression of a particular gene. Analysis tools such as t-test, calculation of fold change and degree of correlation facilitate the comparison of expression profiles between two random samples and the prediction of function of uncharacterized genes. As a repository of expression data encompassing growth in the field, this database can provide baseline information of genes that underlie various agronomically important traits in rice.


Assuntos
Bases de Dados Genéticas , Expressão Gênica , Oryza/genética , Perfilação da Expressão Gênica , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Análise de Sequência , Software , Interface Usuário-Computador
15.
Plant J ; 60(5): 805-19, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19702669

RESUMO

Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25-Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, 'Kasalath' (Kas-Cen8). Analysis of repetitive sequences in Kas-Cen8 led to the identification of 222 long terminal repeat (LTR)-retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas-Cen8 sequence with that of japonica rice 'Nipponbare' (Nip-Cen8) revealed that about 66.8% of the Kas-Cen8 sequence was collinear with that of Nip-Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR-retrotransposon elements in 'Kasalath' had orthologs in 'Nipponbare', thus reflecting recent proliferation of a considerable number of LTR-retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR-retrotransposons between the two Cen8 regions revealed variations between 'Kasalath' and 'Nipponbare' in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR-retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.


Assuntos
Centrômero/química , Variação Genética , Oryza/genética , Sequência de Bases , Centrômero/metabolismo , Centrômero/ultraestrutura , Cromossomos de Plantas , Sequência Conservada , Dados de Sequência Molecular , Oryza/metabolismo , Oryza/ultraestrutura , Análise de Sequência de DNA
16.
Genome Res ; 17(2): 175-83, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17210932

RESUMO

We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is approximately 32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene.


Assuntos
Arabidopsis/genética , Genoma de Planta , Oryza/genética , Proteínas de Arabidopsis/genética , Códon/genética , DNA Complementar/genética , DNA de Plantas/genética , Bases de Dados de Proteínas , Evolução Molecular , Variação Genética , Mutagênese Insercional , Fases de Leitura Aberta , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , RNA de Transferência/genética , Especificidade da Espécie
17.
Plant J ; 46(2): 206-17, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16623884

RESUMO

Telomeres, which are important for chromosome maintenance, are composed of long, repetitive DNA sequences associated with a variety of telomere-binding proteins. We characterized the organization and structure of rice telomeres and adjacent subtelomere regions on the basis of cytogenetic and sequence analyses. The length of the rice telomeres ranged from 5.1 to 10.8 kb, as revealed by both fibre-fluorescent in situ hybridization and terminal restriction-fragment assay. Physical maps of the chromosomal ends were constructed from a fosmid library. This facilitated sequencing of the telomere regions of chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. The resulting sequences contained conserved TTTAGGG telomere repeats, which indicates that the physical maps partly covered the telomere regions of the respective chromosome arms. These repeats were organized in the order of 5'-TTTAGGG-3' from the chromosome-specific region, except in chromosome 7S, in which seven inverted copies also existed in tandem array. Analysis of the telomere-flanking regions revealed the occurrence of deletions, insertions, or chromosome-specific substitutions of single nucleotides within the repeat sequences at the junction between the telomere and subtelomere. The sequences of the 500-kb regions of the seven chromosome ends were analysed in detail. A total of 598 genes were predicted in the telomeric regions. In addition, repetitive sequences derived from various kinds of retrotransposon were identified. No significant evidence for segmental duplication could be detected within or among the subtelomere regions. These results indicate that the rice chromosome ends are heterogeneous in both sequence and characterization.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Oryza/genética , Telômero/genética , Sequência de Bases , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Telômero/ultraestrutura
18.
Plant Mol Biol ; 59(6): 895-907, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16307365

RESUMO

To identify and characterize lineage-specific genes of conifers, two sets of ESTs (with 12791 and 5902 ESTs, representing 5373 and 3018 gene transcripts, respectively) were generated from the Cupressaceae species Cryptomeria japonica and Chamaecyparis obtusa. These transcripts were compared with non-redundant sets of genes generated from Pinaceae species, other gymnosperms and angiosperms. About 6% of tentative unique genes (Unigenes) of C. japonica and C. obtusa had homologs in other conifers but not angiosperms, and about 70% had apparent homologs in angiosperms. The calculated GC contents of orthologous genes showed that GC contents of coniferous genes are likely to be lower than those of angiosperms. Comparisons of the numbers of homologous genes in each species suggest that copy numbers of genes may be correlated between diverse seed plants. This correlation suggests that the multiplicity of such genes may have arisen before the divergence of gymnosperms and angiosperms.


Assuntos
Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Magnoliopsida/genética , Traqueófitas/genética , Sequência de Bases , Chamaecyparis/genética , Biologia Computacional , Sequência Conservada , Cryptomeria/genética , DNA Complementar/metabolismo , Evolução Molecular , Biblioteca Gênica , Genoma de Planta , Dados de Sequência Molecular , Peptídeos/química , Filogenia , RNA Mensageiro/metabolismo , Software
20.
Nucleic Acids Res ; 33(Database issue): D651-5, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15608281

RESUMO

A contig-oriented database for annotation of the rice genome has been constructed to facilitate map-based rice genomics. The Rice Annotation Database has the following functional features: (i) extensive effort of manual annotations of P1-derived artificial chromosome/bacterial artificial chromosome clones can be merged at chromosome and contig-level; (ii) concise visualization of the annotation information such as the predicted genes, results of various prediction programs (RiceHMM, Genscan, Genscan+, Fgenesh, GeneMark, etc.), homology to expressed sequence tag, full-length cDNA and protein; (iii) user-friendly clone / gene query system; (iv) download functions for nucleotide, amino acid and coding sequences; (v) analysis of various features of the genome (GC-content, average value, etc.); and (vi) genome-wide homology search (BLAST) of contig- and chromosome-level genome sequence to allow comparative analysis with the genome sequence of other organisms. As of October 2004, the database contains a total of 215 Mb sequence with relevant annotation results including 30 000 manually curated genes. The database can provide the latest information on manual annotation as well as a comprehensive structural analysis of various features of the rice genome. The database can be accessed at http://rad.dna.affrc.go.jp/.


Assuntos
Mapeamento de Sequências Contíguas , Bases de Dados Genéticas , Genoma de Planta , Genômica , Oryza/genética , Cromossomos de Plantas , Sistemas de Gerenciamento de Base de Dados , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...